SYNTHESIS OF 4,5-DIHYDRO-1,3,4-THIADIAZOLE2-CARBOXAMIDE AND 2-CARBAMOYL-4,5-DIHYDRO1,3,4-THIADIAZOLE 1-OXIDE DERIVATIVES BASED

ON HYDRAZONES OF OXAMIC ACID THIOHYDRAZIDES

V. N. Yarovenko, A. V. Shirokov, I. V. Zavarzin, O. N. Krupinova, A. V. Ignatenko, and M. M. Krayushkin

We have developed a method for obtaining derivatives of 4,5-dihydro-1,3,4-thiadiazole-2-carboxamide by acylation of hydrazones of oxamic acid thiohydrazides. Oxidation of the dihydrothiadiazole ring of the indicated products by hydrogen peroxide leads to formation of 2-carbamoyl-4,5-dihydro-1,3,4-thiadiazole 1-oxides.

Keywords: hydrazones, 1,3,4-dihydrothiadiazole, dihydro-1,3,4-thiadiazole 1-oxide, 1,3,4-thiadiazole, oxamic acid thiohydrazides, thiophene.

We have developed previously a convenient general method for obtaining monothiooxamides by reaction of accessible chloroacetamides with a pre-prepared solution of elemental sulfur in amine [1] and showed that modification of the thioamide group in these monothiooxamides under treatment with N-nucleophiles allows us to obtain a variety of hetarene carboxamides [2-4], while in the reaction with hydrazines oxamic acid thiohydrazides of type 1 are formed (see Scheme 1) [5]. For the latter, we studied the possibility of conversion to 1,3,4-dihydrothiadiazole derivatives, which are of interest for obtaining biologically active compounds [6, 7].

Scheme 1

2 a $R^3 = Ph$, **b** $R^3 = 2$ -thienyl, **c** $R^3 = 4$ -O₂NC₆H₄, **d** $R^3 = 2$ -O₂NC₆H₄, **e** $R^3 = 5$ -methyl-2-thienyl; **1**, **3** R^1 , R^2 , and R^3 are given in Table 1.

N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991; e-mail: yarov@mail.ioc.ac.ru. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 12, pp. 1855-1860, December, 2003. Original article submitted July 4, 2003.

^{*} Dedicated to J. P. Stradins on his 70th birthday.

In this work, from oxamic acid thiohydrazides **1a-h** and aldehydes **2a-e**, we have synthesized for the first time the corresponding hydrazones **3a-h** (Scheme 1), based on which we obtained the previously undescribed 4,5-dihydro-1,3,4-thiadiazole-2-carboxamides **4a-g** (Scheme 2) and 2-carbamoyl-4,5-dihydro-1,3,4-thiadiazole 1-oxides **5a-c** (Scheme 3).

$$3\mathbf{a}-\mathbf{c} \xrightarrow{\text{Cl} \quad \mathbf{R}^4} \qquad \qquad \mathbf{R}^{\frac{1}{2}} \xrightarrow{\text{N}} \qquad \mathbf{R}^{\frac{1}{2}} \qquad \mathbf{R}^{\frac{1}{2}}$$

$$\begin{array}{l} \textbf{4 a} \ R^1 = R^2 = H, \ R^3 = Ph, \ R^4 = Me; \ \textbf{b} \ R^1 = 3\text{-Cl}, \ R^2 = 4\text{-Cl}, \ R^3 = Ph, \ R^4 = Me; \\ \textbf{c} \ R^1 = R^2 = H, \ R^3 = Ph, \ R^4 = Et; \ \textbf{d} \ R^1 = 3\text{-Cl}, \ R^2 = 4\text{-Cl}, \ R^3 = Ph, \ R^4 = Et; \\ \textbf{e} \ R^1 = R^2 = H, \ R^3 = R^4 = Ph; \ \textbf{f} \ R^1 = R^2 = H, \ R^3 = R^4 = 2\text{-thienyl}; \ \textbf{g} \ R^1 = R^2 = H, \\ R^3 = 2\text{-thienyl}, \ R^4 = Ph; \ \textbf{5} \ \textbf{a} \ R^4 = Me; \ \textbf{b} \ R^4 = Et; \ \textbf{c} \ R^4 = Ph; \ \textbf{d} \ R^4 = 2\text{-thienyl} \end{array}$$

Hydrazones **3a-h** were obtained in 60% to 80% yields. According to the ¹H NMR spectra for these compounds, they are found in solution as two tautomeric forms: linear form **A** and cyclic form **B**.

So in the indicated spectra, we see a signal from the proton in the 5 position of the heterocycle of form **B** in the 6.5-7.1 ppm region, and also a signal from the proton of the N=CH- \mathbb{R}^3 moiety of linear form **A** in the 8.7-9.1 ppm region. We determined the ratio of the tautomers **3A** and **3B** from the intensity ratio for the indicated signals (see Table 1), and we established that the ratio is affected by the substituents both in the "aldehyde" (\mathbb{R}^3) and the "thiohydrazide" (\mathbb{R}^1 , \mathbb{R}^2) moieties of the molecule (Table 1).

So introducing an electron-acceptor substituent R^3 shifts the equilibrium toward formation of the cyclic product **B** (compounds **3a,d**), while electron-acceptor substituents R^1 , R^2 may have an opposite effect (compound **3d,e**).

Hydrazones **3a-h** react smoothly with aliphatic, aromatic, and heteroaromatic acid chlorides, in this case forming the corresponding 2-carbamoyl-4,5-dihydro-1,3,4-thiadiazoles **4a-g**. During the reaction with acid chlorides, probably the cyclic form **B** of hydrazone reacts.

The reaction can be conducted in a single flask by adding aldehyde 2 and acid chloride 5 sequentially to the solution of thiohydrazide 1 in DMF.

TABLE 1. Substituent Dependence of the Ratio of Tautomeric Forms of Hydrazones in Solutions, in DMSO- d_6 at T=297 K

C 1*	\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^3	Ratio, %		
Compound*	K	K	K	A	В	
3a	Н	Н	Ph	10	90	
3b	3-Cl	4-Cl	Ph	0	100	
3c	Н	Н	2-thienyl	30	70	
3d	Н	Н	$4-O_2NC_6H_4$	0	100	
3e	3-Cl	4-Cl	$4-O_2NC_6H_4$	20	80	
3f	3-C1	4-Cl	$2-O_2NC_6H_4$	0	100	
3 g	2-Me	3-Me	5-methyl-2-thienyl	40	60	
3h	Н	3-Me	5-methyl-2-thienyl	50	50	

 $[\]overline{* R^1, R^2}$, R^3 are given for compounds 1 and 3.

TABLE 2. Characteristics of Compounds 3, 4, 6

Com-	Empirical formula	Found, % Calculated, %					Mass spectrum,	mp, °C	¹ H NMR spectrum, δ, ppm (<i>J</i> , Hz)	Yield, %
Pounu	101111414	С	Н	N	S	Cl	1102			
1	2	3	4	5	6	7	8	9	10	11
3a	$C_{15}H_{13}N_3OS$	63.54 63.58	4.67 4.62	14.85 14.83	11.30 11.32	_	283	153-155	6.60 (1H, s, S–CH– (B)); 7.00 (2H, m, C ₆ H ₅); 7.40 (7H, m, C ₆ H ₅); 7.90 (1H, d, <i>J</i> = 7.9, C ₆ H ₅); 8.90 (s, N=CH (A)); 9.15 (s, NH(B)); 10.00 (s, 2 NH (B)); 10.10 (s, NH (A)); 10.30 (s, NH (A))	76
3b	$C_{15}H_{11}Cl_2N_3OS$	<u>51.19</u> 51.15	3.11 3.15	11.90 11.93	9.12 9.10	20.15 20.13	352	165-167	6.65 (1H, s, S–CH– (B)); 7.40-7.60 (4H, m, C ₆ H ₅ (B)); 7.90 (1H, d, <i>J</i> = 7.92, C ₆ H ₅ (B)); 8.10 (1H, s, C ₆ H ₅ (B)); 9.40 (1H, s, NH (B)); 10.50 (1H, s, NH (B))	79
3c	$C_{13}H_{11}N_3OS_2$	54.00 53.96	3.85 3.83	14.50 14.52	22.17 22.16	_	289	153-156	6.60 (s, S–CH–(B)); 6.80-7.70 (8H, m, C ₆ H ₅); 8.90 (s, N=CH (A)); 9.15 (s, NH(B)); 10.00 (s, 2NH (B)); 10.10 (s, NH (A)); 10.30 (s, NH (A))	61
3d	$C_{15}H_{12}N_4O_3S$	<u>54.91</u> 54.87	3.64 3.68	17.09 17.06	9.74 9.77	_	328	202-204	6.75 (1H, s, S–CH– (B)); 7.10 (1H, t, <i>J</i> = 7.4, C ₆ H ₅ (B)); 7.30 (2H, t, <i>J</i> = 7.6, C ₆ H ₅ (B)); 7.70 (4H, m, C ₆ H ₅ (B)); 8.30 (2H, d, <i>J</i> = 8.9, C ₆ H ₅ (B)); 9.40 (1H, s, NH (B)); 10.20 (1H, s, NH (B))	79
3e	$C_{15}H_{10}Cl_{2}N_{4}O_{3}S$	45.36 45.35	2.57 2.54	14.07 14.10	8.12 8.07	17.81 17.85	396	203-206	6.80 (s, S–CH– (B)); 7.50 (d, <i>J</i> = 8.7, C ₆ H ₅); 7.70 (3H, m, C ₆ H ₅); 8.10 (2H, m, C ₆ H ₅); 8.30 (3H, m, C ₆ H ₅); 8.70 (s, CH=N (A)); 9.50 (s, NH(B)); 10.50 (s, NH (B))	85
3f	$C_{15}H_{10}Cl_{2}N_{4}O_{3}S$	45.32 45.35	2.51 2.54	14.14 14.10	8.05 8.07	17.87 17.85	396	190-192	7.00 (1H, s, S–CH– (B)); 7.50-7.75 (4H, m, C ₆ H ₅ (B)); 7.90 (1H, m, C ₆ H ₅ (B)); 8.10 (2H, m, C ₆ H ₅ (B)); 9.50 (1H, s, NH (B)); 10.50 (1H, s, NH (B))	81
3g	$C_{16}H_{17}N_3OS_2$	57.92 57.98	5.23 5.17	12.73 12.68	19.30 19.35	_	331	134-136	$\begin{array}{l} 2.10 \ (m, CH_3); \ 2.20 \ (s, CH_3); \ 2.30 \ (s, CH_3); \ 2.40 \ (s, CH_3); \\ 6.60 \ (s, S-CH-(\textbf{B})); \ 6.80-7.70 \ (5H, m, C_6H_5); \ 8.90 \ (s, N=CH \ (\textbf{A})); \\ 9.15 \ (s, NH \ (\textbf{B})); \ 9.60 \ (s, NH \ (\textbf{B})); \ 10.10 \ (s, NH \ (\textbf{A})); \\ 10.35 \ (s, NH \ (\textbf{A})) \end{array}$	56

TABLE 2 (continued)

1	2	3	4	5	6	7	8	9	10	11
3h	C ₁₅ H ₁₅ N ₃ OS ₂	<u>56.79</u> 56.76	4.74 4.76	13.21 13.24	20.24 20.20	_	317	116-118	2.20 (3H, s, CH ₃); 2.55 (3H, s, CH ₃); 6.60 (s, S–CH–(B)); 6.80-7.70 (7H, m, C ₆ H ₅); 8.90 (s, N=CH (A)); 9.15 (s, NH(B)); 10.00 (s, 2 NH (B)); 10.10 (s, NH (A)); 10.30 (s, NH (A))	54
4a*	$C_{17}H_{15}N_3O_2S$	$\frac{62.71}{62.75}$	$\frac{4.68}{4.65}$	$\frac{12.88}{12.91}$	9.89 9.85	_	325	144-147	2.40 (3H, s, CH ₃); 7.20 (2H, m, CH, C ₆ H ₅); 7.40 (7H, m, C ₆ H ₅); 7.75 (2H, d, <i>J</i> = 7.6, C ₆ H ₅); 10.50 (1H, s, NH)	87
4b	$C_{17}H_{13}Cl_2N_3O_2S$	<u>51.76</u> 51.79	$\frac{3.34}{3.32}$	10.64 10.66	8.10 8.13	18.01 17.98	393	175-178	2.40 (3H, s, CH ₃); 7.20 (1H, s, CH); 7.40 (5H, m, C ₆ H ₅); 7.70 (2H, m, C ₆ H ₅); 8.10 (1H, s, C ₆ H ₅); 10.65 (1H, s, NH)	80
4c	C ₁₈ H ₁₇ N ₃ O ₂ S	63.66 63.70	5.02 5.05	12.41 12.38	9.42 9.45	_	339	152-161	1.00 (3H, t, CH ₃); 2.85 (2H, m, <i>J</i> = 7, CH ₂); 7.20 (2H, m, CH, C ₆ H ₅); 7.40 (7H, m, C ₆ H ₅); 7.75 (2H, d, <i>J</i> = 7.92, C ₆ H ₅); 10.50 (1H, s, NH)	82
4d	C ₁₈ H ₁₅ Cl ₂ N ₃ O ₂ S	52.93 52.95	3.71 3.70	10.27 10.29	7.87 7.85	17.34 17.37	407	164-167	1.00 (3H, t, CH ₃); 2.80 (2H, m, <i>J</i> = 7, CH ₂); 7.20 (1H, s, CH); 7.40 (5H, m, C ₆ H ₅); 7.70 (3H, m, C ₆ H ₅); 8.10 (2H, s, C ₆ H ₅); 10.65 (1H, s, NH)	82
4e	$C_{22}H_{17}N_3O_2S$	$\frac{68.23}{68.20}$	$\frac{4.40}{4.42}$	$\frac{10.81}{10.84}$	$\frac{8.32}{8.28}$	_	387	176-180	7.10 (1H, t, <i>J</i> = 7.4, CH, C ₆ H ₅); 7.40-7.60 (13H, m, CH, C ₆ H ₅); 8.00 (2H, d, <i>J</i> = 7.9, C ₆ H ₅); 10.40 (1H, s, NH)	74
4f	C ₁₈ H ₁₃ N ₃ O ₂ S ₃	<u>54.14</u> 54.12	3.31 3.28	10.49 10.52	24.11 24.08	_	399	179-182	7.00 (1H, m, C ₆ H ₅); 7.20 (4H, m, Het, CH, C ₆ H ₅); 7.40 (2H, m, C ₆ H ₅); 7.55 (1H, m, Het); 7.75 (2H, m, Het, C ₆ H ₅); 8.00 (1H, m, C ₆ H ₅); 8.25 (1H, d, <i>J</i> = 7.9, C ₆ H ₅); 10.55 (1H, s, NH)	70
4g	$C_{20}H_{15}N_3O_2S_2$	61.09 61.05	3.83 3.84	$\frac{10.72}{10.68}$	$\frac{16.33}{16.30}$	_	393	189-192	7.00 (1H, t, <i>J</i> = 7.4, C ₆ H ₅); 7.10 (1H, t, <i>J</i> = 7.4, C ₆ H ₅); 7.30-7.80 (10H, m); 8.00 (2H, d, <i>J</i> = 7.9, C ₆ H ₅); 10.45 (1H, s, NH)	67
6a*2	$C_{17}H_{15}N_3O_3S$	<u>59.78</u> 59.81	$\frac{4.47}{4.43}$	12.34 12.31	9.42 9.39	_	341	208-212	2.60 (3H, s, CH ₃); 7.00 (1H, s, CH); 7.20 (1H, t, <i>J</i> = 7.4, C ₆ H ₅); 7.35 (7H, m, C ₆ H ₅); 7.75 (2H, d, <i>J</i> = 7.9, C ₆ H ₅); 10.75 (1H, s, NH)	71
6b	$C_{17}H_{13}Cl_2N_3O_3S$	$\frac{49.80}{49.77}$	$\frac{3.17}{3.19}$	$\frac{10.22}{10.24}$	$\frac{7.85}{7.82}$	$\frac{17.31}{17.28}$	409	237-240	2.60 (3H, s, CH ₃); 7.20 (1H, s, CH); 7.40 (5H, m, C ₆ H ₅); 7.70 (2H, m, C ₆ H ₅); 8.10 (1H, s, C ₆ H ₅); 10.85 (1H, s, NH)	65
6c	C ₂₂ H ₁₇ N ₃ O ₃ S	65.47 65.49	$\frac{4.28}{4.25}$	10.39 10.41	7.91 7.95	_	403	220-224	7.10 (1H, t, <i>J</i> = 7.37, C ₆ H ₅); 7.40-7.60 (13H, m, CH, C ₆ H ₅); 8.00 (2H, d, <i>J</i> = 8.38, C ₆ H ₅); 10.70 (1H, s, NH)	46

 $[\]overline{*^{13}\text{C NM}}$ R spectrum, δ, ppm: 22.1, 69.6, 120.9, 124.7, 125.5, 128.6, 128.7, 128.75, 137.3, 140.9, 147.0, 156.8, 169.3.
* 2 13C NMR spectrum, δ, ppm: 21.8, 85.1, 120.8, 124.8, 126.3, 127.0, 128.0, 128.8, 129.3, 129.4, 132.05, 137.4, 147.8, 156.5, 169.6.

Oxidation of compounds **4a,b,e**, having different substituents on the 4 and 5 positions of the heterocycle, by hydrogen peroxide in acetic acid leads to 2-carbamoyl-4,5-dihydro-1,3,4-thiadiazole 1-oxides **6a-c** in good yields.

Scheme 3

6 a
$$R^1 = R^2 = H$$
, $R^3 = Ph$, $R^4 = Me$; **b** $R^1 = 3$ -Cl, $R^2 = 4$ -Cl, $R^3 = Ph$, $R^4 = Me$; **c** $R^1 = R^2 = H$, $R^3 = R^4 = Ph$

Thus upon acylation of accessible hydrazones of oxamic acid thiohydrazides, 2-carbamoyl-4,5-dihydro-1,3,4-thiadiazoles are formed, the oxidation of which leads to 2-carbamoyl-4,5-dihydro-1,3,4-thiadiazole 1-oxides containing different substituents on the ring.

EXPERIMENTAL

The ¹H NMR spectra were recorded on Bruker WM-200 (200 MHz) and WM-250 (250 MHz) spectrometers in DMSO-d₆; the ¹³C NMR spectra were recorded on a Bruker AC-200 (50 MHz) apparatus in DMSO-d₆. The mass spectra were recorded on a Varian MAT CH-6 mass-spectrometer with direct injection of the sample into the emission source, ionization energy was 70 eV, and operating voltage 1.75 kV. The IR spectra were taken on a Specord M-80 for KBr disks. The melting points were measured on a Boetius hot stage and were uncorrected. For analysis of all the reaction masses and monitoring the purity of the isolated products, we used TLC on Silufol UV-254 plates in the solvent systems ethyl acetate–hexane, 1:2 (3a-h, 5a-g) and 1:1 (6a-c).

The characteristics of compounds **3**, **4**, and **6** are given in Table 2.

Oxamic Acid Thiohydrazides 1a-h were obtained by the procedure in [5].

N-Aryl-2-arylidene(hetarylidene)hydrazino-2-thiooxacetamides (Hydrazones of Oxamic Acid Thiohydrazides) (3a-h). (General Procedure). Aldehyde 2 (1.1 mmol) was added to oxamic acid thiohydrazide 1 (1 mmol) in ethyl alcohol (5 ml). The reaction mixture was boiled for 20 min, then cooled down to room temperature; the precipitate of product 3 was filtered off and washed with hot ethanol.

N-Aryl-4-acetyl-4,5-dihydro-1,3,4-thiadiazole-2-carboxamides (4a-g). (General Procedure). A. Acid chloride 5a-d (1.5 mmol) was added to thiohydrazone 3a-c (1 mmol) dissolved in DMF (3 ml) at room temperature. The reaction mixture was stirred for 2 h, then poured into water; the precipitate of product 4 was filtered off and recrystallized from ethanol.

B. Aldehyde **2a** (1.1 mmol) was added to oxamic acid thiohydrazide **1a,b** (1 mmol) in DMF (3 ml). The reaction mixture was held for 10 min at 50°C, then cooled down to room temperature, and then acid chloride **5a** (1.5 mmol) was added. The reaction mass was stirred for 2 h and poured into water; the precipitate of products **4a,b** was filtered off and recrystallized from ethanol. The yield of compound **4a** and **4b** was respectively 52% and 47%. The products were identical to samples obtained by procedure A (mp, ¹H NMR spectra and mass spectra).

N-Aryl-4-acetyl-2-carbamoyl-N-4,5-dihydro-1,3,4-thiadiazole 1-Oxides (6a-c). (General Procedure). 15% H_2O_2 (2 ml) was added to dihydrothiadiazole 3 (0.5 mmol) in acetic acid (8 ml). The reaction mixture was boiled for 15 min, then cooled down to room temperature and poured into water. The precipitate was filtered off, and oxides **6a-c** were isolated from the precipitate using TLC (hexane-ethyl acetate, 1:1). IR spectrum, v, cm⁻¹: **6a** – 1040 (S=O), **6b** – 1032 (S=O), **6c** – 1028 (S=O).

REFERENCES

- 1. M. M. Krayushkin, V. N. Yarovenko, I. V. Zavarzin, and A. Yu. Martynkin, in: *Abstracts: Twelfth International Conference of Organic Synthesis*, Florence, Italy (1998), p. 106.
- 2. V. N. Yarovenko, S. A. Kosarev, I. V. Zavarzin, and M. M. Krayushkin, *Izv. Akad. Nauk, Ser. Khim.*, 2002 (1998).
- 3. V. N. Yarovenko, S. A. Kosarev, I. V. Zavarzin, and M. M. Krayushkin, *Izv. Akad. Nauk, Ser. Khim.*, 753 (1999).
- 4. V. N. Yarovenko, S. A. Kosarev, A. V. Shirokov, I. V. Zavarzin, and M. M. Krayushkin, *Izv. Akad. Nauk, Ser. Khim.*, 1487 (2000).
- 5. V. N. Yarovenko, A. V. Shirokov, O. N. Krupinova, I. V. Zavarzin, and M. M. Krayushkin, *Zh. Org. Khim.*, **39**, 1204 (2003).
- 6. K. Toyooka, T. Kasai, S. Hori, Y. Kawashima, M. Shibuya, and S. Kubota, *Chem. Pharm. Bull.*, **39**, 2837 (1991).
- 7. B. Szczepankiewicz, G. Liu, H. Jae, A. Tasker, I. Gunawardana, T. von Geldern, S. Gwaltney, J. Wu-Wong, L. Gehrke, W. Chiou, R. Credo, J. Alder, M. Nukkala, N. Zielinski, K. Jarvis, K. Mollison, D. Frost, J. Bauch, Y. Hui, A. Claiborne, Q. Li, and S. Rosenberg, *J. Med. Chem.*, **44**, 4416 (2001).